DIP1
Tags:
DIP 2
xfrom wikipedia
Between 1985 and 1988, Karikó was a postdoctoral fellow at Temple University in Philadelphia. Karikó participated in a clinical trial in which patients with AIDS, hematologic diseases, and chronic fatigue syndrome were treated with double-stranded RNA (dsRNA). At the time, this was considered groundbreaking research, as the molecular mechanism of interferon induction by dsRNA was not known, although the antiviral and antineoplastic effects of interferons were well-documented.[38]
In 1988, Karikó accepted a job at Johns Hopkins University without first informing her lab advisor Suhadolnik of her intention to leave Temple, as recounted in Gregory Zuckerman's 2021 book A Shot to Save the World. Suhadolnik told her that if she went to Johns Hopkins, he would have her deported, and subsequently reported her to U.S. immigration authorities, claiming that she was "illegally" in the United States. In the time it took her to successfully challenge the resulting extradition order, Johns Hopkins withdrew the job offer. Suhadolnik "continued bad-mouthing Karikó, making it impossible for her to get a new position" at other institutions, until she met a researcher at Bethesda Naval Hospital who "had his own difficult history with Suhadolnik".[39] Karikó subsequently confirmed that the incident had happened as Zuckerman described, but emphasized that "more importantly I was always grateful to [Suhadolnik for] sending me the IAP66 form in 1985, for the opportunity he gave me to work in his lab", noting that "when I gave a lecture [at Temple, a] couple of years later, I thanked him for the science I learned from him."[40] From 1988 to 1989, she worked at the Uniformed Services University of the Health Sciences in Bethesda, Maryland[41] where she worked with signal protein interferons.[32]
In 1989, she was hired by the University of Pennsylvania to work with cardiologist Elliot Barnathan on messenger RNA (mRNA).[27] In 1990, while an adjunct professor at the Perelman School of Medicine at the University of Pennsylvania, Karikó submitted her first grant application in which she proposed establishing mRNA-based gene therapy.[8] Ever since, mRNA-based therapy has been Karikó's primary research interest. However, in the 1990s, mRNA fell out of favor as many researchers, biotechs, and pharmaceutical companies doubted its potential. Though supported by Elliot Barnathan (who left UPenn in 1997) and David Langer (who then hired her), Karikó found it difficult to gain funding.[42][43] She was initially on track to become a full professor, but after repeated grant rejections the university demoted her in 1995.[20][44] Nevertheless, she chose to remain and continue her mRNA research.[42][45]
In 1997, she met Drew Weissman, a professor of immunology who had recently arrived at the University of Pennsylvania.[46] They began to exchange ideas and then to collaborate. Weissman's funding was critical in helping Karikó to continue and extend her research[42][45] and the combination of Weissman's immunology and Karikó's biochemistry was extremely effective.[43] They began to move the technology forward, solving problems one at a time, and eventually gaining recognition. Weissman has commented "We had to fight the entire way."[42][45] Karikó's persistence was noted as exceptional against the norms of academic research work conditions.[47][32][4]
Kate was really just unbelievable... She was always incredibly inquisitive. She read voraciously. She would always know the latest technology or the latest paper, even if it was in a totally different area, and she'd put two and two together and say, 'Well why don't we do this?' Or, 'Why don't we try this formulation?'
— Elliot Barnathan[42]
Before 2005, a major problem with the proposed therapeutic use of mRNA was that in vivo use led to inflammatory reactions.[3] A key insight came about when Karikó focused on why transfer RNA (tRNA), used as a control in an experiment, did not provoke the same immune reaction as mRNA.[1] A series of landmark studies beginning in 2005 demonstrated that while synthetic mRNA was highly inflammatory, tRNA was noninflammatory. Karikó and Weissman determined how specific nucleoside modifications in mRNA led to a reduced immune response:[45][3] by replacing uridine with pseudouridine.[48] Their key finding of a chemical modification of mRNA to render it non-immunogenic was rejected by the journals Nature and Science, but eventually accepted by the publication Immunity.[49][16]
Another important achievement by the researchers was the development of a delivery technique to package the mRNA in lipid nanoparticles, a novel pharmaceutical drug delivery system for mRNA. The mRNA is injected into tiny fat droplets (lipid nanoparticles) which protect the fragile molecule until it can reach the desired area of the body.[26][50][51] They demonstrated its effectiveness in animals.[52]
Karikó and Weissman founded a small company, RNARx, and in 2006 and 2013 received patents for the use of several modified nucleosides to reduce the antiviral immune response to mRNA. Soon afterward, the University of Pennsylvania sold the intellectual property license to Gary Dahl, the head of a lab supply company that eventually became Cellscript.[53] Weeks later, Flagship Pioneering, the venture capital company backing Moderna, contacted her in an attempt to license the patent, at which point Karikó had to tell them it was no longer available.[8]
In 2006, Katalin Karikó reached out to biochemist Ian MacLachlan to work with him on the chemically altered mRNA.[54] Initially, MacLachlan and Tekmira turned away from the collaboration. Karikó wanted to team up with Ian MacLachlan because he was the leader of a team that helped advance mRNA technology. Karikó was working on establishing the formulated lipid nanoparticle delivery system that encapsulates mRNA in a dense particle through a mixing process.[55][56]
In early 2013, Karikó heard of Moderna's $240 million deal with AstraZeneca to develop a Vascular endothelial growth factor mRNA. Karikó realized that she would not get a chance to apply her experience with mRNA at the University of Pennsylvania, so she took a role as vice president at BioNTech RNA Pharmaceuticals[8] (and subsequently became a senior vice president in 2019), while maintaining an adjunct professorship at the University.[57]
As of October 2023, Karikó is a professor at University of Szeged in Hungary.[11]
Joun in perplexity chats
Does AI have name for terrifying ignorance rsks eg Los Angeles failed insurance sharing
In these days of LLM modeling, is there one integral one for multilateral systems reponsibilities
Is Ethiopia's new secirity model an Africawide benchmark
can you hlep map womens deepest intel nets
what can you tell us about ...
thanks to JvN
2025report.com aims to celebrate first 75 years that followers of Adam Smith , Commonwealth begun by Queen Victoria, James Wilson and dozens of Royal Societies, Keynes saw from being briefed 1951 by NET (Neumann Einstein Turing). Please contacts us if you have a positive contribution - we will log these at www.economistdiary.com/1976 www.economistdiary.com/2001 and www.economistdiary.com/2023 (admittedly a preview!!)
First a summary of what the NET asked to be meidiated to integrate trust during what they foresaw as a chaotic period.
Roughly they foresaw population growth quadrupling from 2 billion to 8 billion
They were most concerned that some people would access million times moore tech by 1995 another million times moore by 2015 another million times moore by 2025. Would those with such access unite good for all. If we go back to 1760s first decade that scots invented engines around Glash=gow University James Wat and diarist Adam Smith we can note this happened just over a quarter of millennium into age of empire. WE welcome corrections be this age appears to have been a hectic race between Portugal, Spain, France Britain Netherlands as probbly the first 5 to set the system pattern. I still dont understand was it ineviatble when say the Porttuguese king bet his nations shirt on navigation that this would involve agressive trades with guns forcing the terms of trade and colonisation often being a 2nd step and then a 3rd steb being taking slaves to do the work of building on a newly conquered land. I put this way because the NET were clear almost every place in 1951 needed to complete both independence and then interdependence of above zero sum trading games. Whils traidning things runs into zero sums (eg when there is overall scarcity) life critical knowhow or apps can multiplu=y value in use. Thats was a defining value in meidting how the neyt's new engineering was mapped. Of course this problem was from 1945 occuring in a world where war had typiclly done of the following to your place:
your capital cities had been flattened by bombing - necessitating architecture rebuild as well as perhaps an all chnage in land ownership
your peoples had gone through up to 6 years of barbaric occupation -how would this be mediated (public served) particularly if you were a nation moving from radio to television
yiu mifgt eb britain have been on winning side but if huge debt to arms you had bought
primarily you might be usa now expected by most outside USSR to lead every advance'
in population terms you might be inland rural (more than half of humans) where you had much the least knowledge on what had hapened because you had been left out of the era of connecting electricity and communications grids
The NETts overall summary : beware experts in energy will be the most hated but wanted by national leaders; and then far greater will be exponential risk is the most brilliant of connectors of our new engines will become even more hated and wanted. We should remember that the NET did not begin with lets design computers. They began with Einstein's 1905 publications; newtonian science is at the deepest limits systemically wrong for living with nature's rules.
WE can thrash through more understanding of how the NET mapped the challenges from 1951 at http://neumann.ning.com/ Unfortunatnely nobody knew that within 6 years of going massively public in 1951 with their new engineering visions, all of the net would be dead. One of the most amzaing documents I have ever seen is the last month's diary of von neumann roughly October 1955 before he became bedridden with cancer. All over usa engineering projects were receiving his last genius inputs. And yet more amazing for those interested in intelligence machines is his last curriculum the computer and the brain scribbled from his bedroom in bethesda and presented posthumously by his 2nd wife Klara at Yale 1957 before she took her own life about a year later. A great loss because while neumann had architected computers she had arguably been the chief coder. Just to be clear Turing also left behind a chief coder Jane who continued to work for Britain's defence planning at cheltenham for a couple of decades. Economistwomen.com I like to believe that the founders of brainworking machines foresaw not only that women coders would be as produytive as men but that they would linking sustainability from bottom up of every community. At least that is a valid way of looking at how primarily 1billion asian women batted the systemic poverty of being disconnected from the outside world even as coastal places leapt ahead with in some cases (G Silicon Valley, whatever you call Japan-Korea south-Taiwan-HK-Singapore access to all of 10**18 times moore
Epoch changing Guides
1 AI Training AI Training.docx
2 Exploring cultural weaknesss of encounters with greatest brain tool.docx
help assemble 100000 millennials summitfuture.com and GAMES of worldrecordjobs.com card pack 1 i lets leap froward from cop26 glasgow nov 2021 - 260th year of machines and humans started up by smith and watt- chris.macrae@yahoo.co.uk-
WE APPROACH 65th year of Neumann's tech legacy - 100 times more tech decade - which some people call Industrial Rev 4 or Arttificial Intel blending with humans; co-author 2025report.com, networker foundation of The Economist's Norman Macrae -
my father The Economist's norman macrae was privileged to meet von neumann- his legacy of 100 times more tech per decade informed much of dad's dialogues with world leaders at The Economist - in active retirement dad's first project to be von neumanns official biographer - english edition ; recently published japanese edition - queries welcomed; in 1984 i co-authored 2025report.com - this was celebrating 12 th year that dad( from 1972, also year silicon valley was born) argued for entrepreneurial revolution (ie humanity to be sustainable would need to value on sme networks not big corporate nor big gov); final edition of 2025report is being updated - 1984's timelines foresaw need to prep for fall of brlin wall within a few months; purspoes of the 5 primary sdg markets were seen to be pivotal as they blended real and digital - ie efinance e-agri e-health e-learning and 100%lives matter community; the report charged public broadcasters starting with BBC with most vital challenge- by year 2000 ensure billions of people were debating man's biggest risk as discrepancy in incomes and expectations of rich & poor nations; mediated at the right time everyone could linkin ideas as first main use of digital webs--- the failure to do this has led to fake media, failures to encourage younger half of the world to maxinise borderless friendships and sdg collabs - see eg economistwomen.com abedmooc.com teachforsdgs.com ecop26.com as 2020s becomes last chance for youth to be teh sustainability generation
© 2025 Created by chris macrae.
Powered by